Computation of the Singular Value Decomposition

نویسندگان

  • Alan Kaylor Cline
  • Inderjit S. Dhillon
چکیده

then σ is a singular value of A and u and v are corresponding left and right singular vectors, respectively. (For generality it is assumed that the matrices here are complex, although given these results, the analogs for real matrices are obvious.) If, for a given positive singular value, there are exactly t linearly independent corresponding right singular vectors and t linearly independent corresponding left singular vectors, the singular value has multiplicity t and the space spanned by the right (left) singular vectors is the corresponding right (left) singular space. Given a complex matrix A having m rows and n columns, the matrix product U V∗ is a singular value decomposition for a given matrix A if U and V , respectively, have orthonormal columns. has nonnegative elements on its principal diagonal and zeros elsewhere. A = U V∗. Let p and q be the number of rows and columns of . U is m × p, p ≤ m, and V is n × q with q ≤ n. There are three standard forms of the SVD. All have the i th diagonal value of denoted σi and ordered as follows: σ1 ≥ σ2 ≥ · · · ≥ σk , and r is the index such that σr > 0 and either k = r or σr+1 = 0. 1. p = m and q = n. The matrix is m × n and has the same dimensions as A. 2. p = q = min{m, n}.The matrix is square. 3. If p = q = r, the matrix is square. This form is called a reduced SVD and denoted by Û ̂V̂∗.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symbolic computation of the Duggal transform

Following the results of cite{Med}, regarding the Aluthge transform of polynomial matrices, the symbolic computation of the Duggal transform of a polynomial matrix $A$ is developed in this paper, using the polar decomposition and the singular value decomposition of $A$. Thereat, the polynomial singular value decomposition method is utilized, which is an iterative algorithm with numerical charac...

متن کامل

Modified Laplace Decomposition Method for Singular IVPs in the second-Order Ordinary Differential Equations

  In this paper, we use modified Laplace decomposition method to solving initial value problems (IVP) of the second order ordinary differential equations. Theproposed method can be applied to linear and nonlinearproblems    

متن کامل

Change Point Estimation of the Stationary State in Auto Regressive Moving Average Models, Using Maximum Likelihood Estimation and Singular Value Decomposition-based Filtering

In this paper, for the first time, the subject of change point estimation has been utilized in the stationary state of auto regressive moving average (ARMA) (1, 1). In the monitoring phase, in case the features of the question pursue a time series, i.e., ARMA(1,1), on the basis of the maximum likelihood technique, an approach will be developed for the estimation of the stationary state’s change...

متن کامل

Singular Value Decomposition based Steganography Technique for JPEG2000 Compressed Images

In this paper, a steganography technique for JPEG2000 compressed images using singular value decomposition in wavelet transform domain is proposed. In this technique, DWT is applied on the cover image to get wavelet coefficients and SVD is applied on these wavelet coefficients to get the singular values. Then secret data is embedded into these singular values using scaling factor. Different com...

متن کامل

Graph Clustering by Hierarchical Singular Value Decomposition with Selectable Range for Number of Clusters Members

Graphs have so many applications in real world problems. When we deal with huge volume of data, analyzing data is difficult or sometimes impossible. In big data problems, clustering data is a useful tool for data analysis. Singular value decomposition(SVD) is one of the best algorithms for clustering graph but we do not have any choice to select the number of clusters and the number of members ...

متن کامل

روش‌های تجزیه مقادیر منفرد منقطع و تیخونوف تعمیم‌یافته در پایدارسازی مسئله انتقال به سمت پائین

The methods applied to regularization of the ill-posed problems can be classified under “direct” and “indirect” methods. Practice has shown that the effects of different regularization techniques on an ill-posed problem are not the same, and as such each ill-posed problem requires its own investigation in order to identify its most suitable regularization method. In the geoid computations witho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006